

Tokyo Electron IR Day

October 12, 2021

Forward Looking Statements

Disclaimer regarding forward-looking statements

Forward-looking statements with respect to TEL's business plan, prospects and other such information are based on information available at the time of publication. Actual performance and results may differ significantly from the business plan described here due to changes in various external and internal factors, including the economic situation, semiconductor/FPD market conditions, intensification of sales competition, safety and product quality management, intellectual property-related risks, and impacts from COVID-19.

Processing of numbers

For the amount listed, because fractions are rounded down, there may be the cases where the total for certain account titles does not correspond to the sum of the respective figures for account titles. Percentages are calculated using full amounts, before rounding.

Exchange risk

In principle, export sales of Tokyo Electron's mainstay semiconductor and FPD production equipment are denominated in yen. While some settlements are denominated in dollars, exchange risk is hedged as forward exchange contracts are made individually at the time of booking. Accordingly, the effect of exchange rates on profits is negligible.

FPD: Flat panel display

Agenda

1. Opening

- 2. Presentation
 - Aiming to Be a Truly Excellent Company
 - Supply Chain Initiatives for the Environment
 - Technology Trends and TEL's Business Opportunities
 - <Break, 10 minutes>
 - Challenges and Solutions for Advanced EUV Resist Process Technology
 - Latest Technological Challenges and TEL's Activities in Etch
 - TEL's Approach to Next Generation Film Deposition Technology

3. Q&A

14:30-14:35 14:35-16:45

16:45-17:30

Aiming to Be a Truly Excellent Global Company

October 12, 2021

Toshiki Kawai Representative Director, President & CEO

Current World Situation

COVID-19 pandemic Frequent natural disasters due to climate change Geopolitical and human rights issues

Severe impact on people's lives

The Shape of a New Era

Semiconductors, essential for information and communication technologies, are conspicuously important

Trends Toward the Future

Digital (ICT/DX) × Green (decarbonization)

<image>

The world is currently pushing firmly ahead with implementing ICT and DX, as well as taking action to realize a carbon-free society in order to build a strong and resilient society in which economic activities do not stop under any circumstances

Market Structure of Digitalization

Smart cities

Smartening across industries

Smart factories

Smart healthcare

 ICT industry
 Video/music streaming, mobile apps, cloud services, etc.

 Semiconductors
 Digital infrastructure

 "Key in industry and society"
 Semiconductor groduction equipment

Semiconductors are a critical infrastructure at the core of our social system

9

US\$ billion

Market being driven by technological innovation for ICT, DX and decarbonization

* WFE (Wafer fab equipment): Wafer fab equipment refers to the production equipment used in front-end production and in wafer-level packaging production.

WFE Market Trends

Background to changes in the market trend

- 1. From product to product + value
- 2. Diversification of applications
- 3. Continued innovation in semiconductor technology
- 4. Increased market visibility

WFE market transitioning to a new growth phase

High expectations for semiconductors and production equipment market TEL's role and responsibilities will grow further toward the future

We strive to contribute to the development of a dream-inspiring society through our leading-edge technologies and reliable service and support.

Practicing Our Corporate Philosophy (Creating Shared Value)

Applying our expertise developed as an industry leading equipment manufacturer and using all management resources – including our employees who both create and fulfill company values – we will contribute to realizing "Digital x Green" society through the pursuit of technological innovation in semiconductors

We will strive to expand profits in the medium to long term and continuously enhance our corporate value

to make people around TEL "Happy"

Integrated Report Published in August 2021

Report covering TEL's initiatives to achieve medium- to long-term profit growth and continuous improvement of corporate value

TEL

Important and Priority Material Issues

Leveraging Strengths

Etch Cleaning developer

Products with the world's No. 1 or No.2 market share

Major products and market position $1_{dc} 2_{dc} 2_{dc} 1_{dc} 1_{dc} 1_{dc} 2_{dc} 1_{dc}$ Coater/ Cleaning Plasma Gas chemical Diffusion Batch developer etch furnace deposition deposition etch

Market share of coater/developer for EUVL

Coater/ EUV developer lithography **No.1**

Worldwide install base

Annual increase by about **4,000** units Industry's largest install base 78,000 units

Aggressive Investment in R&D

Change in R&D Investment

- Have product lineup that drives semiconductor tech innovation
- Align tech roadmap spanning multiple generations with customers
- Offer optimal solutions for customers' both existing and upcoming lines through technical support
- Achieve high hit rate in product development

Contribute to realizing "Digital x Green" society by creating technologies that only TEL can provide

Building a Structure Ready for Business Expansion

Tohoku plant new production building Jul. 2020: began operation

Yamanashi plant new production building Aug. 2020: began operation

Miyagi plant May 2021: acquisition of plant site

Building a structure for stable supply to respond to rapidly increasing demand for semiconductors

Building a Stable Supply Chain

Supply Chain Management

STQA: Supplier Total Quality Assessment CSR and BCP Assessment

Investigation of conflict minerals, environmental laws and regulations, etc.

Miyagi Technology Innovation Center (Construction completed Sep. 2021)

Support continuous industry growth through collaboration with partner companies

Value Chain Sustainability Initiatives

CORP IR / October 12, 2021

Global Initiatives

Sustainable Development Goals (SDGs)

Clarify initiatives through business by materiality and deploy company-wide

SUSTAINABLE GOALS

Tokyo Electron supports the SDGs

Participation in International Initiatives

Signed the UN Global Compact, joined the Responsible Business Alliance (RBA), endorsed the Task Force on Climate-related Financial Disclosures (TCFD)

External Evaluation on our ESG Initiatives

Highly rated by evaluation organizations around the world

FTSE4Good

Member of Dow Jones Sustainability Indices Powered by the S&P Global CSA

MSCI ESG Leaders Indexes Constituent

東京エレクトロン株式会社のMSCI指数への組み入れ、およびMSCIのロゴ、商標、 サービスマークまたは指数後の使用は、MSCIまたはその関係者による東京エレク トロン株式会社の役種、損量またはプロモーションではありません。MSCI最近は MSCIの独占的財産です。MSCI指数の名前およびロゴはMSCIまたはその関係会社 の商標またはサービスマークです。

Environmental Approach

Strengthen initiatives throughout our business and supply chain toward realization of a carbon-free society

World Class Safety

TCIR (The number of workplace incident per 200,000 work hours) TCIR: total case incident rate

Source: U.S. Bureau of Labor Statistics. or figures announced by each company (all except TEL use the calendar year)

Aiming for zero incidents

TFL Results

Corporate growth is about people Employees both create and fulfill company values

TEL Values as Code of Conduct

Pride	Challenge	Ownership	Teamwork	Awareness
We take pride in providing high-value products and services.	We accept the challenge of going beyond what others are doing in pursuing our goal of becoming number one globally.	We will keep ownership in mind as we think things through, and engage in thorough implementation in order to achieve our goals.	We respect each other's individuality and we place a high priority on teamwork.	We must have awareness and accept responsibility for our behavior as respectful members of society.
We offer our customers cutting-edge technological products, along with the highest level of quality and technical service, in the pursuit of total customer satisfaction. We consider profit to be an important measure of value in our products and services.	We view changes as opportunities and respond to them flexibly and positively. We are tolerant of failure and consider it important to learn from the process and results.	We always have an awareness of problems and tackle challenges with enthusiasm and a sense of responsibility. We make decisions quickly and do what we consider to be the best course of action.	We create a workplace with an open atmosphere and positive communication. We establish relationships of trust with our business partners in order to facilitate mutual growth.	We strictly comply with laws and regulations and the rules of society. We give top priority to safety, health and the global environment. We strive to become a company that local communities hold in high esteem.

Human Rights

	Global Reach	Employees	Suppliers
TEL	76 sites in	Approx.	Approx.
	18 countries & regions	15,000	1,000

Contribute to developing a dream-inspiring society by emphasizing a way of thinking that respects human rights based on a high ethical standard throughout the supply chain

Further Increasing Corporate Value

Offence

Achieve world-class operating margin and ROE of over 30%

Offence

Safety

8

- Quality
- Compliance
- Engagement
- Risk management & Security

Semiconductors/FPD = Future Creating technologies that the world has never seen Continue to take on challenges and evolve

Aiming to Be a Truly Excellent Global Company

E-COMPASS Supply Chain Initiatives for the Environment

October 12, 2021

Sumie Segawa Vice Division GM, Corporate Innovation Division

Supply Chain Initiative Focused on the Environment

E-COMPASS

Environmental Co-Creation by Material, Process and Subcomponent Solutions

Important initiatives for realizing the "Digital × Green" society

Background 1: Disasters Caused by Climate Change

Multiple unprecedented natural disasters are occurring around the world and environmental consciousness is rising

CORP IR / October 12, 2021

Proactive response is essential to ensure sustainability of business activities

Background 3: TEL's Duty as an Industry Leader

Digital (ICT / DX) × **Green** (decarbonization)

TEL will assertively drive the industry toward a sustainable society

CORP IR / October 12, 2021

E-COMPASS Mission / Vision / Values

Mission	Aim to reduce the environmental impact on the Earth by raising the green performance of the microelectronics industry through collaboration with and encouragement of the entire supply chain
Vision	Work with leading-edge environmental technology throughout the supply chain to co-create a sustainable and prosperous future where humans and nature co-exist
Values	Provide microelectronics manufacturing and equipment technologies with excellent green performance, regulatory compliance, and reduced environmental impact from operations

Pursue the "Digital × Green" society

We strive to contribute to the development of a dream-inspiring society through our leading-edge technologies and reliable service and support
Activities of E-COMPASS

Activities

Partnership strengthening	Environmentally hazardous substances-free equipment	Development of equipment with proactive environmental performance	
Results			
Pursuing sustainability throughout the industry	Delivering environmental friendly products	Production technology innovation by environmental technology	

Reducing environmental burden throughout the supply chain and promoting innovations in environmental technology

Activity 1: Partnership Strengthening for Reducing CO₂ Emissions

 $\ensuremath{\text{CO}}_2$ emissions across the value chain

Raising green performance of the semiconductor industry through collaboration with and encouragement of the entire supply chain to reduce environmental impact on the Earth

Case Study: Initiatives to Reduce Environmental Impact in Supply Logistics

Shifting from truck to rail transport

Efforts to reduce packaging materials

Cardboard box reduction: approx. 14,000/year

CO₂ emissions reduction: 10.6t-CO₂/year

①Reduced bubble wrap usage

Reducing supply chain CO₂ emissions through modal shifts and packaging reform

Activity 2: Environmentally hazardous substances-free equipment

Build relationships of trust with stakeholders by providing products that can be used safely long-term

Establish supply chain that provides products with minimal environmental impact

Case Study: Identifying Future Trends and Establishing Alternative Methods

Proactively identifying substances of concern for adverse effects on the environment and human health, work with partner companies to determine alternatives and reduce environmental impact

Understanding future regulations	Identify substances of concern for adverse effects on the environment - Proactive response based on leading EU / US policy and regulatory trends		Equipment free of hazardous s
Examining alternative methods	 Technological cooperation with partner companies Evaluation/adoption of materials free of environmentally hazardous substances Implement alternatives through technological innovation 		TEL
Emissions reduction initiatives	Co-creation with suppliers - Pursue methods to maximize resources and minimize the release of hazardous substances to the environment		

Promoting reduction of environmental impacts through identifying future trends and technological innovation

nvironmentally

Activity 3: Development of equipment with proactive environmental performance

In addition to safety and performance specifications, set environmental performance as a core, we will provide more value-add products

Accelerating technological innovation utilizing equipment with environmental performance as new competitive edge

Miyagi Technology Innovation Center

Began operating a technology innovation center with the aim of innovation in next generation production technology

- Driving development of innovative production technology that improves the performance, quality and lead time of TEL products
- Promoting collaboration as a location for facilitating co-creation with partner companies
- Accelerating the development of environmental technologies focused on the future

Accelerating further evolution of manufacturing equipment through co-creation with partner companies

Pursuing Further Partnerships

Accelerating global activities in pursuit of a wide range of partner companies and seed technologies

Technology trends and TEL's business opportunities

October 12, 2021

Akihisa Sekiguchi, Ph.D. Deputy GM, Corporate Innovation Division

Overview

- Composition of market, semiconductor market, data processing and growth
 - Warm up
 - Accelerating Data Creation through data launching platforms, communication & Analytical Intelligence (AI, Quantum)
- Future device evolution and R&D trends
 - System integration
 - Device, design, technology co-optimization, and hybrid devices
- Current status and direction of logic, memory and CIS technology
 - Continuation of scaling but with higher technical hurdles
 - Alternative solutions, innovation needed but fundamentally evolution of current tool lineup covers
- Summary

Composition of Market, Semiconductor Market, Data Processing and Growth

Evolution of Automobiles

CC BY-SA 4.Source: <u>ModelTMitch</u> https://en.wikipedia.org/wiki/File:1925_Ford_Model_T_touring.jpg

The advantage of the Ford Model T is that it works even without the use of semiconductors

Evolution of Automobiles as a Technology Platform

Semiconductors

- Logic: CPU, GPU, controller, AI
- Memory: NAND, DRAM
- Sensors: CIS, radar, vision, LIDAR
- Power: convertors, regulators, generators
- Communication: 5G
- Displays: projectors, panels

Material

• Body: lighter composite, recyclable

Communication and Decision Making

Local vs. networked

Autonomous driving cars are already at the core of the technology platform

Evolution of Communication Networks

5G (cloud) and edge (local) data processing are indispensable for CORP IR / October 12, 2021 autonomous driving cars to become more widespread

Evolution of Servers and Accelerators

Source: Shutterstock

Cloud evolution is also essential for processing ever-growing data

In-vehicle Semiconductors

Platform (PF) needs drive system evolution

The Abundance of Advanced Semiconductors Found in Smartphones

Smartphones still the representative portable and mobile platform

Internet of People

A tech platform by which even humans equip themselves with sensors, CPUs and comms systems

Internet of Animals? ... Bio-logging Technology

A by-product of the pet boom amid the coronavirus pandemic

Future Device Evolution and R&D Trends

Previously Mentioned Trends Coming in the Next 10 Years

Response to diversifying applications

Roadmap for the Next 10 Years

Development of SDGs-compatible technology for incorporation into diversifying applications

Advances in System Integration

59

Advances in System Integration: Logic

Miniaturization, optimization of design and technology, advances in fabrication, 3D-ification

60

Advances in System Integration: Memory

Toward miniaturization, new structure memory, and 3D stacking

Advances in System Integration: BEOL

Multi-layered interconnect with built-in memory element

Semiconductor Devices: Direction of BEOL Memory Development

eDRAM STT-MRAM PCM RRAM FeRAM

Various forms of memory have been developed and can be used in accordance with their intended purpose

Multi-functional Devices: Neural Processing Unit

e.g., Leading edge mobile SoC

Performance improvements, miniaturization and reduced energy through the expansion of optimized functional blocks

Advances in System Integration: More Options

Source: TEL estimates

Device	CIS	3D NAND	DRAM				Logic	
Stacking	Sensor+ DRAM + Logic	Cell + Peri	HBM (w/ Bump)	HBM (Bump-less)	Cell + Peri	Backside PDN	Logic + SRAM Cell	3D Hybrid Logic + I/O + RF
	VV-VV	VV-VV	D-W	W-	·W	VV-VV	W-W/D-W	D-W
Bonder	Fusion (Permanent)	Fusion (Permanent)	Temporary	Fus (Perm	ion anent)	Fus (Perm	sion anent)	Temporary & Fusion
туре	Cu to Cu Hybrid	Cu to Cu Hybrid	De-bonding)	Cu to Cu Hybrid		Ox to Ox	Cu to Cu Hybrid	
Wafer THK	3µm	4µm	10µm	3µm	2µm	1µm	2µm~1µm	2µm
Structure	Source: H. Tsugawa, Sony (IEDM2017)		Bump	Bump-less	DRAM Cell Peri. CMOS wafer		SRAM Logic	Chip partition (Chiplet) CPU L2/L3 CPU SRAM 14cm ² 1.4cm ² CPU & I/O 12cm ² CPU 12cm ² CPU 14cm ² 1.4cm ² CPU & I/O 12cm ² CPU 14cm ² 1.4cm ² CPU SRAM 1.4cm ² 1.4cm ² CPU SRAM 1.4cm ² 1.4cm ² CPU & I/O 1.7cm ² CPU
Status	HVM	R&D~MP	HVM	R&D	R&D	R&D	R&D	R&D

System integration techniques also optimized via PPACx

Roadmap for the Next 10 Years

Development of SDGs-compatible technology for incorporation into diversifying applications

Correlation b/w Environmental KPIs and Technology Node Migration

Observations

- Performance is still improving node-over-node but at a reduced rate (delay)
- Area scaling is being achieved but slowing beyond IN7 (~ Foundry 5nm)
- Technology node still drives reduction in manufacturing energy per device
- Cost of manufacturing is still declining
- Water usage is still declining

Conclusion

- Advancing technology nodes contributes towards SDGs
- But slowing pace of reduction implies that further innovation is needed
- Working on advanced node devices contributes to SDGs

Advanced technology development is directly linked to the SDGs

Development Trends for Key Devices

Semiconductor Devices: Direction of Development

• Lower cost per bit

Through new structures, new materials

Greater image quality

Logic Trends and Business Opportunities

Advances in Smartphone CPUs

Product Year	2014			2020	
Tech. Node	20nm]		5nm	
Transistor	Last Gen. Planar			4 th Gen	. FinFET
Adv. Litho	ArFi			EUV	
Die Size	89mm ²			88mm ²	
Transistor#	2B	×	5.9	11.8B	
CPU Cores#	2	Now crobit		6	
GPU Cores#	4	Many cores	Son	4	
NPU Cores#	N/A			16	
L2/L3 Cache	5MB	×	5.6	28MB	
					Source: Wikipedia

With advances in transistor fabrication, materials and lithography, can improve integration by increasing transistor numbers, expanding functions, etc.

Advances in GPU (Operational Accelerator)

Product Year	2016	2020
Tech. Node	16nm	7nm
Transistor	1 st Gen. FinFET+	3 rd Gen. FinFET
Adv. Litho	ArFi	ArFi
Die Size	610mm ²	826mm ²
Transistor#	15.3B ×3.5	54.2B
FP32 Cores#	3584	6912
FP64 Cores#	1792 New architecture Many cores New function	3456
INT32 Cores#	N/A	6912
L2/L3 Cache	5.440MB ×11.3	61.696MB
		Source: Wikipedia

Number of transistors increasing in HPC too, visible trend toward expansion of functions Higher integration also sought

Advances in Logic Integration Density

Pitch shrink

Further advances in lithography, etch, thin film deposition and cleaning technologies needed for miniaturization

Advances in Logic Integration Density

Design Technology Co-optimization: DTCO

Key enablers

- Narrow, straight etch
- Loading free recess etch
- Fin capping to prevent oxidation
- Low resistance silicide, metal

② Cell width scaling: Single Diffusion Break, Contact Over Active Gate etc.

Active Fin

Dummy Gate

: Single Diffusion Break

Active Gate

Key enablers

- Low stress gap filling
- Multi-color films for etch
- High selective etch

Further advances in process technology for DTCO sought

Contact Over Active Gate

Contact Plug

Standard Gate Contact

Dummy Gate

: Double Diffusion Break

Poly pitch Cell height

Logic Technology Roadmap

*Assume new knob will be created in each node **Single Diffusion Break, ***Self Align Gate Contact

Year of HVM (20k/month)	2018	2020	2022	2024	2026	2028	2030
Node	N7	N5	N3	N2	N1.4	N1	N0.7
	3~2 Fin	2 Fin	2~1 Fin	GAA NS	Forksheet	CFET	2 nd Gen. CFET
Device							
Poly pitch (PP)	56	48	45	42	39	36	33
Min. MP [nm]	40	28	22	20	18	16	12
Cell height (CH)	240 (2Fin)	210 (2Fin)	176 (2Fin)	120 (NS)	90 (NS)	64 (CFET)	48 (CFET)
Density (a.u.) PP x CH x DTCO*	1	1.73 (vs. N7)	1.53 (vs. N5)	1.81 (vs. N3)	1.65 (vs. N2)	1.75 (vs. N1.4)	1.67 (vs. N1.0)
Scaling booster	EL SDB**	JV High μ channel	SAGC*** Dipole eWF	Backsic	de PDN	Heterogeneous channel	2D material
					[4]		

Source: iedm 2020^[1], IRDS2020 with TEL's update ^[1] imec, S. B. Samavedam et al.

75

Aiming for 1.6-1.8x increase in logic density along with pitch scaling, DTC and scaling booster

CORP IR / October 12, 2021

GAA Nanosheet Device (Gate All Around Nanosheet)

*Source: SC Song (Qualcomm) et al. VLSI 2019

Improved controllability of channel width by nanosheet structure, increased channel width through stacking \rightarrow Low leak, high on current

GAA Device Process Flow

FinFET

Source: TEL

GAA FET

TEL's wafer fab equipment is essential for creating complex GAA structures

CORP IR / October 12, 2021

2 nm GAA Technology

TEL's wafer fab equipment is essential for creating complex GAA structures

CORP IR / October 12, 2021

GAA Related Process Modules

Mold stack & Etch	Inner spacer	Nanosheet release	Replacement gate	
Si/SiGe	Gate spacer Inner spacer	Total Eventure	Sac film	
 SiGe/Si: Defect free, Uniform EPI Trench etch: Vertical profile STI Liner: Prevent oxidation STI OX: Low temp. STI recess: Loading less 	 Fin recess: Vertical profile Indent etch: Loading less Inner spacer dep: Low-k (k<5) Inner spacer etch: High selective 	• Full channel etch: High selective	 Reliability Si etch: High selective Advanced drying: Collapse free Sac film: Conformal WFM/Dipole film: Conformal WFM/Dipole etch: High selective 	

Source: TEL

Offering new solutions for critical modules in nanosheet devices

GAA Related Process Modules

Key points are preventing oxidation of Si/SiGe trench, high selectivity and precisely controllable SiGe etch, and preventing pattern collapse

Miniaturization: EUV Lithography Technology Challenges

- The number of EUV photons is only **1/14** compared to ArF at the same dose.
- Photon absorption of EUV resist is lower than that of ArF resist.
- These cause large edge roughness, resulting in one of the sources of pattern defects.

Performance Line : LER, Pinching, Bridge

Hole : L-CDU, Kissing, Missing Kissing Missing

Source: S. Morikita, et al., Tokyo Electron Miyagi (DPS2018)

Resist stack and etching co-optimization necessary for realizing high productivity, precise control and low defects

Global Development Facilities

(As of June 1, 2021)

15 nm Pitch L/S Fabrication Using EUV SADP

Litho Pitch: 30nm CDSEM CG6300 512*512/250k

Achieve industry-leading 15 nm pitch line and space pattern

Back End: Wafer Bonding and Thinning Technology for CFET

Low distortion wafer-to-wafer bonding technology and substrate film thinning technology are necessary for scaling booster technology

Back End: Wafer Bonding and Thinning Technology for BSPDN

Backside PDN

Low distortion wafer-to-wafer bonding technology and substrate film thinning technology are necessary for scaling booster technology

CORP IR / October 12, 2021

BEOL (Back side)

Back End Advances: Bonding

3D integration drives device hybridization

DRAM Trends and Business Opportunities

DRAM Structure and Process Flows

Source: TEL

High aspect ratio structure is fabricated with sophisticated patterning technology

Advances in DRAM for Smartphones

Product Year	2014		2020		
Tech. Node	25nm		1ynm		
DDR	LPDDR3	5	LPDDR4X		
Data Rate	1.333Gb	pps	4.266Gbpps		
Capacity	1GB ×4 or 6		4GB or 6GB		
	(4Gb ×2)	(8Gb or 12Gb×4)		
			Source: Wikipedia		
DRAM			DRAM		
Logic			Logic		
Package su	bstrate		Integrated Fan-Out		

Flip Chip Package on Package

With the increase in data handling volumes, packaging has advanced with expanded capacity, accelerated processing and further integration

GPU (Operational Accelerator) and HBM DRAM

Data volumes are also increasing in HPC, driving packaging advances with increased integration, higher capacity and faster processing

DRAM Technology Roadmap

Source: TEL estimates

Key Modules in 3D DRAM

CMOS wafer bonding to enable CbA

Currently evaluating multiple options

NAND Trends and Business Opportunities

Advances in 3D NAND Bit Density

Source: TEL

Reduced device footprint achieved by allocating logic under memory

NAND Technology Roadmap

Source: TEL estimates

Year of HVM (20k/month)	2020	2021 2022	2023	2024 202	5 2026	2027	2028	2029	2030
Stack (~1.6x/3years)	128L	16x~19xL (176)	22x~25xL (240)	28x~32xL (304)	35x~4xxL (368)	41x~4 (440	15xL 0)	5xxL (512)	
Tier	1 or 2	2	2	2	2 or 3	3		3 or 4	
Vertical pitch	50~55nm	45~55nm	40~50nm	35~45nm	35~45nm	35~45	5nm	35~40nm	
Memory height	7~8µm	8.5~10.5μm	10~12.5μm	11~14μm	13.5~17μm	16~20.	.5μm	18.5~21μm	
Channel		Poly Si grain CIP		incl. MILC Si					
WL metal	W	VV	W	Мо	Мо	Мс	C	Мо	
#of memory holes b/w slits	9	9	9~24	14~24	19 or 24	19 or	24	19 or 24	
Peri. CMOS (In general)	Under array or Next array	Under array	Under array or Bonding	Under array or Bonding	Under array or Bonding	Under a or Bon	array Iding	Under array or Bonding	
CORP IR / Oct	tober 12, 2021	#of memory holes	Slit Slit Slit Slit Slit Slit Slit Slit	Cell Cell Cell Tier	Vertical Pitch	tch	©Tokyo Electron	T	EL 95

3D NAND Technology Challenges and Solutions

Source: TEL

96

Processing technology advances essential for enabling further high value-add in NAND devices

CIS Trends and Business Opportunities

CIS Has Expanded Sensor Functions With Onboard AI

Hybridization of devices is progressing and creating further added-value

CORP IR / October 12, 2021

CIS Technology Challenges and Solutions

Increased importance of bonding technology, as well as etch and thin film deposition technology

Summary

Raising Added-value in SPE

WFE investment (100k WSPM*, greenfield/TEL estimates)

Expanding business opportunities for SPE manufacturers on arrival of new applications and rising level of technological difficulty

Summary

- Market demands are becoming more complex
- To meet these needs, the evolution of devices is accelerating, including multifunctional devices
- Most of the multifunctionalization can be covered by existing process and system technologies, but technological evolution is also essential
- Technology development must be undertaken in alignment with environmental issues (SDGs)
- Development of advanced devices leads directly to the SDGs
- TEL's process development is conducted on a worldwide basis, and the company is strongly promoting the development of leading-edge devices through global collaboration both internally and externally
- Specific examples will be included in the following business unit announcements

Challenges and solutions for advanced EUV resist process technology

October 12, 2021

Keiichi Akiyama VP & General Manager, CTSPS BU

CLEAN TRACK[™] LITHIUS Pro[™] Z EUV Coater/Developer for EUV

LITHIUS Pro[™] Z released in 2012 (Total shipment > 1600 systems)

Releasing new EUV CAR/MOR compatible features

High Reliability

100% market share in in-line coater/developer for EUV

High Productivity

Maximizes EUV exposure tool performance

High Versatility

Applicable to Metal Oxide Resists and underlayers in addition to Chemically Amplified Resists

The LITHIUS Pro[™] Z platform, which has a long track record of mass production for exposure tools with a variety of light sources, ensures high reliability and high productivity for EUV exposure tools. Also offers high versatility for next generation EUV

EUV Lithography Technology Roadmap in Logic

High volume production year	2020	2022	2024	2026	2028	2030
Node	5 nm	3 nm	2 nm	1.4 nm	1 nm	0.7 nm
Device	2 Fin	2~1 Fin	GAA NS	Forksheet	CFET	2 nd Gen. CFET
	Cash Down	THE	u tra	in the second		
Minimum metal pitch [nm]	28	22	20	18	16	12
EUV patterning technology	EUV MP	EUV MP	EUV MP	EUV MP high-NA EUV	EUV MP high-NA EUV MP	EUV MP high-NA EUV MP
Resist	CAR	CAR (+MOR)	CAR (+MOR)	CAR+MOR	CAR+MOR	CAR + MOR

CAR: Chemically Amplified Resist, MOR: Metal Oxide Resist, MP: Multi-patterning

Enhancing versatility of coater/developer to respond to future EUV lithography technologies including MOR and high-NA EUV

Forecast of EUV CAR/MOR Application Layer Counts in Logic Device

MOR ratio is gradually rising, but CAR ratio remains high. Our coater/developer achieves high versatility by handling MOR and CAR in one system. Technologies for high-NA (NA0.55) lithography are under development as it is expected to increase application

EUV Lithography Process Roadmap and Challenges

EUV Lithography Process Roadmap and Challenges

Solution Example for CAR Technology Mass Production Challenge: Technology to Prevent Collapse of Extremely Miniaturized Resist Line Patterns in Wet Development

Example of 28 nm pitch 14 nm line formation with 38 nm resist film thickness

New post-development rinse technology prevents pattern collapse for high aspect ratio CAR, realizing wide margin for high volume production process

Solution Example for CAR Technology Mass Production Challenge: Nanohole Formation Through Optimization of Lithography and Etch Technology

Resolving issue of residue from resist development by optimization through integrating EUV lithography and etch process technologies

EUV Lithography Process Roadmap and Challenges

Solution Example for MOR Technology Mass Production Challenge: Introduction of Newly Developed Post Exposure Bake (PEB) Oven for MOR

Newly developed MOR-compatible PEB oven enables process for mass production

CORP IR / October 12, 2021

Solution Example for MOR Technology Mass Production Challenge:

Newly Developed Wet Development Technology

Resist collapse with existing development technology

New wet development technology prevents resist collapse

New wet development technology prevents resist collapse, reduces EUV exposure dose by 25% and decreases thickness variations

Solution Example for MOR Technology Mass Production Challenge: Module Solution Integrated with Etch

Roughness after etch 30 nm pitch 15 nm line

(imec standard SEM recipe)

Bridge defect after etch 32 nm pitch 16 nm line

Electric characteristics data

30 nm pitch 15 nm line interconnects pattern

MOR enabled low defects, low roughness and high yield at device mass production level

CORP IR / October 12, 2021

MOR Wet Resist Process and Dry Resist Process Cost Comparison

Resist Process Cost Comparison

Threefold cost difference

MOR wet resist process is superior to dry resist process (CVD + dry development) not only in terms of operational advantages including cost, TAT, queue time management, equipment footprint and power consumption, but the wet process also demonstrates superior data in terms of process performance

EUV Lithography Process Roadmap and Challenges

CORP IR / October 12, 2021

Preparing for High-NA EUV Generation: Working with Partners to Address Challenges

Notification Jun 8, 2021

Tokyo Electron to Collaborate with imec-ASML Joint High NA EUV Research Laboratory

Tokyo Electron (TEL; Head Office: Minato-ku, Tokyo; President: Toshiki Kawai) announced today the company will introduce its leading-edge Coater/Developer to the imec-ASML joint high NA EUV research laboratory (joint high NA lab) in Veldhoven, the Netherlands. The equipment will be integrated inline* with EXE:5000, ASML's next-generation high NA EUV lithography system with a 0.55 numerical aperture (NA), scheduled to be operational in 2023. By collaborating with imec and ASML, TEL will continue to pursue technological development to meet the ongoing scaling needs of its customers.

High NA EUV lithography is expected to provide more advanced pattern scaling solutions compared to conventional EUV lithography. The Coater/Developer being introduced to the joint high NA lab will feature advanced capabilities which are not only compatible with widely used chemically amplified resists and underlayers, but are also compatible with spin-on metal-containing resists. Spin-on metal-containing resists have demonstrated high resolution and high etch resistance, and are expected to enable finer patterning. However, metal-containing resists also require sophisticated pattern size control as well as metal contamination control on the backside and bevel of the wafer. To meet these challenges, the Coater/Developer being installed at the joint high NA lab comes with leading-edge process modules capable of handling metal-containing resists.

Combined with the new process modules, a single unit of TEL Coater/Developer can process a wide variety of materials inline, including chemically amplified resists, metal-containing resists, and underlayers. This will enable flexible fab operation, while also realizing increased productivity and high availability that are among the advantages of a Coater/Developer.

Taking advantage of the breadth of its products spanning several adjacent processes, TEL is forming a partnership with resist materials suppliers to provide comprehensive patterning solutions covering etch processes as well as Coater/Developer for lithography processes.

Inline coater/developer into high-NA EUV exposure tool

Plan to build nano patterning technology with high-NA EUV in cooperation with imec and ASML

CORP IR / October 12, 2021

https://www.tel.com/news/topics/2021/20210608_001.html

Preparing for High-NA EUV Generation: Demonstration of Nano Patterning with MOR

imec standard SEM recipe, demo with NA0.33

Wet development achieves 12 nm line pattern without collapse with roughness (LER/LWR) of less than 2 nm

Summary

- Realize new technology for EUV utilizing Chemically Amplified Resist (CAR) by the synergies between lithography and etch
- Introduce Metal Oxide Resist (MOR) technology for mass production.
 Achieve high performance/low cost process.
 Perform both CAR and MOR in one system
- Toward high-NA EUV lithography technology, collaborate with partners and provide leading-edge coater/developer process solutions for the mass production of future generations of devices

CLEAN TRACK[™] LITHIUS Pro[™] Z EUV

Latest technological challenges and TEL's activities in etch

October 12, 2021

Isamu Wakui VP & General Manager, ES BU

Etch System Strategy

- HARC process
 - 3D NAND (multi-level contact, word line isolation), DRAM (capacitor):
 Continue to differentiate through process performance and productiv
 - 3D NAND (channel): Launch new systems that can differentiate by providing both precise process controllability and even higher productivity
- Patterning process
 - DRAM: Differentiate with reduced manufacturing costs for customers through process control and combining etch steps

- Interconnect/contact process
 - Apply knowledge cultivated in logic to DRAM
- Gas chemical etch process
 - Create a new market through plasma assist technology

121

Business Opportunities in Memory

Diameter 100 mm

Respond to growing dry etch business opportunities in NAND/DRAM

- Etch performance that corresponds with higher aspect ratios
- Contribution to improvement of customers' productivity

Multi-layering in Memory

Etch market growing due to continuing 3D multi-layering

Challenges in High Aspect Ratio Dielectric Etch

Solution Aspect Ratio Etch

Results of TEL's technology:

- Precise process control for high aspect ratio etch
- Improved etch rate due to reduced depth loading

Realize higher aspect ratio etch process through TEL's original ion angular distribution control technology

Enhancing Productivity

Features of the Episode[™] UL

- Flexible layout
 - Select flexibly from 4 to 12 chambers
- Space saving
 - Significantly reduced footprint per chamber
- Smart tool
 - Autonomous process control through big data analysis

SMART TOOL

Introduction of new platform (for both memory and logic) contributes to enhancing productivity

Business Opportunities in Logic

Respond to changes in device manufacturing and EUV lithography for further scaling

CORP IR / October 12, 2021

Etch for EUV Lithography

Challenges in etch for EUV

- Large defects and variation compared with ArF
- Extremely thin, low resistance to plasma

Pattern after EUV lithography

Source: S. Morikita, et al., Tokyo Electron Miyagi (DPS2018)

Effect of dry etch on EUV resist

Etch Solution toward EUV Lithography

TEL's initiatives

- Improve post-lithography variation by repeating deposition and etch processes
- Improve mask selectivity by leaving film on resist
- Leverage collaborations with imec and ASML and realize patterning solutions for high NA generation

Improved selectivity by deposition on resist followed by plasma treatment

Combining deposition and etching to improve variation and etch selectivity

Initiative for GAA Nano Sheet Structures

Nano Sheet process challenges:

- Uniformity in rectangle shape
- Mitigation of roughness/residue on patterned surface

TEL's initiative: Gas chemical etch

- High etch selectivity
- High uniformity
- Residue removal/decreased roughness

Source: N. Loubet, et al., IBM, TEL Technology Center, America (IEDM2019)

Leveraging the advantages of gas chemical etch to contribute to leading-edge processes

Enhancement of Development and Production Capabilities

Completed Miyagi Technology Innovation Center on September 22, 2021

- Lab area with partner companies
- Open innovation area
- Customer training center

Tokyo Electron Miyagi's Miyagi Technology Innovation Center

Create innovative technologies and enhance production capabilities through co-creation with partner companies

Role of Miyagi Technology Innovation Center

For continuing to provide customers with the finest products and services

FIL

Futuretech Incubation Lab

Create innovative equipment tech

Higher efficiency, lower environmental impact tech, low lead time tech, etc.

PIL Production Innovatech Lab

Production technology innovation

Next generation production technologies uniting DX and machine assembly

Provide world-class training Raise on-site capabilities for customers and TEL

Promote factory-wide production technology innovation

CORP IR / October 12, 2021

 Driven by 3D NAND and patterning, a continued high level of investment in the etch equipment market is expected

 Continue technological innovation for both the memory and logic in response to changes in devices and customer needs

 Work to increase development and production capabilities toward further market growth

TEL's Approach to Next Generation Film Deposition Technology

October 12, 2021

Hiroshi Ishida VP & General Manager, TFF BU

Ultra-thin Film Dielectric Process for Nano Sheet FET

Solution for thin film formation in high aspect ratio narrow spaces

Our batch furnaces provide the high quality and ultra-thin dielectric film CORP IR / October 12, 2021 required in nano sheet formation TE

135

Dielectric Film Application Map: Gapfill in Narrow Spaces, Ultra-thin Film Formation

Expanding product lineup for high quality ultra-thin dielectric film

CORP IR / October 12, 2021

*FS: Feasibility study

Film Formation in Narrow Spaces Utilizing Semi-batch ALD

Response to challengers in 3D-NAND multi-layer stacking

Plasma ALD SiO₂

Realize total seamlessness with combination of film formation inhibition and ALD

Semi-batch ALD realizes both high productivity and excellent gapfill performance though multiple continuous processes

Scaling by Silicon Deposition: New Approach

Cost efficient solution for erosion in fin formation by batch process

Realize new process by batch deposition through the combination with pre-cleaning CORP IR / October 12, 2021

Scaling by Silicon (Si/SiGe) Deposition: Solution for Cost Reduction

Batch deposition to solve the cost challenge of multilayering by epitaxial deposition

- ✓ Logic Nano Sheet: Epi for SiGe/Si multilayering
- ✓ Logic Backside PDN: Epi for SiGe for etch stop layer and boron doped Si
- ✓ Future DRAM: Epi for SiGe/Si stack

Aiming to expand the application for batch deposition integrated with pre-clean feature

Deuterium Annealing for Enhancing Device Reliability

Improving electrical characteristics and reliability of film in collaboration with customers by utilizing batch furnaces with high productivity

N-H bonding within tunnel oxide film is deteriorated through electric stress caused by write/erase Improve anti-deterioration by replacing N-H bonding with N-D bonding

Realizing process condition suited to D₂ processes using ultra-large batch

CORP IR / October 12, 2021

Technology for Surface Modification with Plasma

Contribute to process preciseness and device reliability by film modification through low temperature plasma process

Need low-temperature film modification process for the devices with low temperature resistance

Improve film quality by supplying low electron temperature, high density radicals

the thermal oxidization process

Technology for Surface Modification with UV Light

Improve film quality of ultra-thin film by irradiating the surface to be deposited with UV light

Expanding application for gate dielectric film etc., with its ultra-thin film controllability and high film quality

Hard Mask Module Solutions

Aim to achieve improved LCDU* through collaboration across BUs and products

Summary

- What is being sought from deposition technology in next generation devices is undergoing increasing diversification
- Despite high degree of difficulty, solutions to cost are always being sought
- TEL constantly aims for optimal solutions in both performance and cost from multiple products/technologies
- Combining pre-process, etch and modification treatment with deposition to offer technological solutions
- Expand collaboration across BUs and between products

Notice

You may not copy or disclose to any third party without prior written consent with TEL.

Tokyo Electron

