TEL has worked to incorporate suggestions from customers in its products, and has promoted reduction of environmental burden during semiconductor production and elimination of hazardous substances from the materials used to make equipment. We respect the customer’s needs to know about environmental impact of products throughout the life cycle, and work as quickly as possible to collect data relating to these impacts—from the manufacturing stage through to disposal. As a result, TEL has become an industry leader in terms of accumulating product LCA data for use when designing products.

TEL Stance on Eco Products

We are introducing Life Cycle Assessment for all new products we develop, and designing products to minimize environmental impact.

Organization in TEL

TEL is defining its actions and priorities in terms of reducing the environmental burden of its equipment, and is working to improve environmental performance.

Regarding Eco Products, the Eco Design Working Group has been established under the Product EHS Technical Committee (see page 21) and is now functioning. This working group started from creating an “EHS road map” for equipment, and is working to apply it to achieve energy and resource conservation. In addition, in each business unit, we are gathering LCA data on new equipment being developed and learning about the environmental impact, and are reflecting those findings in equipment improvements and next-generation models.

Due to the need to consider the environmental impact of the raw materials we procure for equipment production, we established a Green Procurement Working Group, which has clarified TEL procurement standards. This working group is investigating the environmental efforts of suppliers and contractors, and where necessary, supporting them by offering environmental education. We have also established a Lead-Free Task Team and aim to implement lead-free policies starting with products produced in 2006.

Eco Product Concept

<table>
<thead>
<tr>
<th>TEL Stance on Eco Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEL has worked to incorporate suggestions from customers in its products, and has promoted reduction of environmental burden during semiconductor production and elimination of hazardous substances from the materials used to make equipment. We respect the customer’s needs to know about environmental impact of products throughout the life cycle, and work as quickly as possible to collect data relating to these impacts—from the manufacturing stage through to disposal. As a result, TEL has become an industry leader in terms of accumulating product LCA data for use when designing products.</td>
</tr>
</tbody>
</table>

Organization in TEL

TEL is defining its actions and priorities in terms of reducing the environmental burden of its equipment, and is working to improve environmental performance.

Regarding Eco Products, the Eco Design Working Group has been established under the Product EHS Technical Committee (see page 21) and is now functioning. This working group started from creating an “EHS road map” for equipment, and is working to apply it to achieve energy and resource conservation. In addition, in each business unit, we are gathering LCA data on new equipment being developed and learning about the environmental impact, and are reflecting those findings in equipment improvements and next-generation models.

Due to the need to consider the environmental impact of the raw materials we procure for equipment production, we established a Green Procurement Working Group, which has clarified TEL procurement standards. This working group is investigating the environmental efforts of suppliers and contractors, and where necessary, supporting them by offering environmental education. We have also established a Lead-Free Task Team and aim to implement lead-free policies starting with products produced in 2006.

Eco Product Concept

Organization in TEL

TEL is defining its actions and priorities in terms of reducing the environmental burden of its equipment, and is working to improve environmental performance.

Regarding Eco Products, the Eco Design Working Group has been established under the Product EHS Technical Committee (see page 21) and is now functioning. This working group started from creating an “EHS road map” for equipment, and is working to apply it to achieve energy and resource conservation. In addition, in each business unit, we are gathering LCA data on new equipment being developed and learning about the environmental impact, and are reflecting those findings in equipment improvements and next-generation models.

Due to the need to consider the environmental impact of the raw materials we procure for equipment production, we established a Green Procurement Working Group, which has clarified TEL procurement standards. This working group is investigating the environmental efforts of suppliers and contractors, and where necessary, supporting them by offering environmental education. We have also established a Lead-Free Task Team and aim to implement lead-free policies starting with products produced in 2006.
TEL has launched efforts to conduct LCA as a way to objectively evaluate the environmental impact of equipment, using common criteria that we can share with our customers.

To begin with, we started by establishing common methodologies for whole TEL and getting a general grasp of the environmental impact of equipment, and then implementing an LCA for the major models in each business unit. We compared new and old models using LCA methods and confirmed that the overall environmental impact lower in new models. Now we are applying complete LCAs on all newly-developed equipment, and making continuous improvements of environmental performance by feeding the findings of assessments back into new product development.

As the silicon wafer size used in semiconductor production continues to grow, the production equipment itself also grows larger. Also, as the market demands semiconductors with increasingly higher performance, the processes for production are also becoming more complex, and various additional features are also demanded of the production equipment. In this context, if equipment is not designed with the environment in mind, there will be a general tendency for increasingly severe environmental impact. LCAs implemented to date have shown us that more than 90% of the environmental burden during the entire life cycle of our equipment occurs during operation of the equipment.

Below we introduce an example of LCA implementation by comparing the new model TELFORMULA (Thermal Processing System) with an existing model, the α-303i.

As shown in the graph, we learned that for the existing model, the consumable supplies accounted for the vast majority of the environmental burden incurred during operation of the equipment. Of this, the consumption associated with the quartz chamber and non-production wafers, known as “dummy wafers,” was considerable. In comparison, the TELFORMULA has a completely revised quartz chamber structure and cleaning methodology introduced in-situ dry cleaning that uses the latest technology to replace wet cleaning. As a result, we were not only able to reduce the quantity of dummy wafers, but this also effected a large improvement in the life of the quartz chamber. At the same time we improved equipment specs like the utilization rate and process performance, we were able to significantly reduce the environmental impact.

Life Cycle Assessment (LCA)

TEL has launched efforts to conduct LCA as a way to objectively evaluate the environmental impact of equipment, using common criteria that we can share with our customers.

To begin with, we started by establishing common methodologies for whole TEL and getting a general grasp of the environmental impact of equipment, and then implementing an LCA for the major models in each business unit. We compared new and old models using LCA methods and confirmed that the overall environmental impact lower in new models. Now we are applying complete LCAs on all newly-developed equipment, and making continuous improvements of environmental performance by feeding the findings of assessments back into new product development.

Product Life Cycle Assessment

LCA Case Study (Thermal Processing System)

As the silicon wafer size used in semiconductor production continues to grow, the production equipment itself also grows larger. Also, as the market demands semiconductors with increasingly higher performance, the processes for production are also becoming more complex, and various additional features are also demanded of the production equipment. In this context, if equipment is not designed with the environment in mind, there will be a general tendency for increasingly severe environmental impact. LCAs implemented to date have shown us that more than 90% of the environmental burden during the entire life cycle of our equipment occurs during operation of the equipment.

Below we introduce an example of LCA implementation by comparing the new model TELFORMULA (Thermal Processing System) with an existing model, the α-303i.

As shown in the graph, we learned that for the existing model, the consumable supplies accounted for the vast majority of the environmental burden incurred during operation of the equipment. Of this, the consumption associated with the quartz chamber and non-production wafers, known as “dummy wafers,” was considerable. In comparison, the TELFORMULA has a completely revised quartz chamber structure and cleaning methodology introduced in-situ dry cleaning that uses the latest technology to replace wet cleaning. As a result, we were not only able to reduce the quantity of dummy wafers, but this also effected a large improvement in the life of the quartz chamber. At the same time we improved equipment specs like the utilization rate and process performance, we were able to significantly reduce the environmental impact.